发布于 

MySQL分页查询优化

当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。

准备工作

为了能够列举出一些优化测试,下面对测试表进行一些说明

  • 表名:order_history
  • 描述:记录业务订单的历史表
  • 主要字段:unsigned int id,tinyint(4) int type
  • 具体字段:该表一共包含37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
  • 数据量:5709294
  • MySQL版本:5.7.16

运行三次下面的语句:

1
select count(*) from orders_history;

得到结果:5709294

三次执行的时间分别是:5903,5323,8401

一般分页查询

1
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:

  • 第一个参数指定第一个返回记录行的偏移量
  • 第二个参数指定返回记录行的最大数目
  • 如果只给定一个参数:它表示返回最大的记录行数目
  • 第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
  • 初始记录行的偏移量是0(而不是 1)

我们进行一个简单的测试

1
SELECT * FROM order_history WHERE type = 8 LIMIT 1000,10;

这个语句就是表示获取第1000条数据开始,后面的十条数据。

执行三次,查询时间如下:

  • 3040 ms
  • 3063 ms
  • 3018 ms

使用这样的模式,我们运行下面的语句(偏移量相同,数据量不同)

1
2
3
4
5
select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询时间如下:

  • 查询1条记录:3072ms 3092ms 3002ms
  • 查询10条记录:3081ms 3077ms 3032ms
  • 查询100条记录:3118ms 3200ms 3128ms
  • 查询1000条记录:3412ms 3468ms 3394ms
  • 查询10000条记录:3749ms 3802ms 3696ms

我们可以发现,在查询的数据量比较少的时候,时间基本上没有太多的差距,在数据量比较大的时候,查询时间瞬间飙升。

我们再运行下面的语句(偏移量不同,数据量相同)

1
2
3
4
5
select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:

  • 查询100偏移:25ms 24ms 24ms
  • 查询1000偏移:78ms 76ms 77ms
  • 查询10000偏移:3092ms 3212ms 3128ms
  • 查询100000偏移:3878ms 3812ms 3798ms
  • 查询1000000偏移:14608ms 14062ms 14700ms

随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。

这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。

使用子查询优化

1
2
3
4
5
6
7
8
select * from orders_history where type=8 limit 100000,1;

select id from orders_history where type=8 limit 100000,1;

select * from orders_history where type=8 and id >=
(select id from orders_history where type=8 limit 100000,1) limit 100;

select * from orders_history where type=8 limit 100000,100;

4条语句的查询时间如下:

  • 第1条语句:3674ms
  • 第2条语句:1315ms
  • 第3条语句:1327ms
  • 第4条语句:3710ms

针对上面的查询需要注意:

  • 比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
  • 比较第2条语句和第3条语句:速度相差几十毫秒
  • 比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍

这种方式相较于原始一般的查询方法,将会增快数倍。

使用ID进行限定优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

1
2
select * from orders_history where type=2 
and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。

还可以有另外一种写法:

1
select * from orders_history where id >= 1000001 limit 100;